
National Aeronautics and Space Administration

www.nasa.gov

“UnInit” 
"Locating use of uninitialised data in floating point

computation in big applications!
!

Oct 31, 2012!
NASA Advanced Supercomputing Division !!

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Location of software on Pleiades"

/u/scicon/tools/share/uninit!
!
bin!
doc!
!README_uninit_background.txt!
!README_uninit_methodology.txt!
!README_uninit_usage.txt!

examples!
src!
!

2

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Why do we care?"

•  Pulling in data from uninitialised data is a notorious
source of error for applications!

•  Different run-time environments can result in different
values being pulled in, giving different results!

•  Most visible when changing systems or compilers!
•  Typically dismissed out-of-hand by users as a potential

source of error!
•  Has a corrosive effect via the requirement to maintain

legacy software/environments to preserve the so-called
“correct” functioning of some application!

•  Which of course can stop “working” at any moment!
•  Users either reticent or ill-equipped to fix this!

3

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Some compiler modules on Pleiades"
comp/intel/10.0.023_64 math/intel_mkl_32_10.0.011!

comp/intel/10.0.026_32 math/intel_mkl_64_10.0.011!

comp/intel/10.0.026_64 mathematica/7.0.1!

comp/intel/10.1.008_32 matlab/2009b!

comp/intel/10.1.008_64 matlab/2010b!

comp/intel/10.1.011_32 memoryscape/3.2.2-1!

comp/intel/10.1.011_64 metis/4.0.1!

comp/intel/10.1.013_32 mpfr/2.4.2!

comp/intel/10.1.013_64 mpi/mpt.1.25!

comp/intel/10.1.015_32 mpi-intel/2011.0!

comp/intel/10.1.015_64 mpi-intel/3.1.038!

comp/intel/10.1.021_32 mpi-intel/3.1b!

comp/intel/10.1.021_64 mpi-intel/3.2.011!

comp/intel/11.0.069_32 mpi-intel/4.0.028(default:4.0:4.0.0)!

comp/intel/11.0.069_64 mpi-intel/4.0.2.003(4.0.2)!

comp/intel/11.0.074_32 mpi-mvapich2/1.2p1/gcc!

comp/intel/11.0.074_64 mpi-mvapich2/1.2p1/intel!

comp/intel/11.0.081_32 mpi-mvapich2/1.2p1/intel-PIC!

comp/intel/11.0.081_64 mpi-mvapich2/1.4.1/gcc!

comp/intel/11.0.083_32 mpi-mvapich2/1.4.1/intel!

comp/intel/11.0.083_64 mpi-mvapich2/1.6/gcc!

comp-intel/11.1.038 mpi-mvapich2/1.6/intel!

comp-intel/11.1.046 mpi-sgi/mpt.1.26!

comp-intel/11.1.056 mpi-sgi/mpt.2.01!

comp-intel/11.1.072 mpi-sgi/mpt.2.04!

comp-intel/2011.2(default:2011) mpi-sgi/mpt.2.04-fsa!

comp-intel/2011.4.191(2011.4) mpi-sgi/mpt.2.04.10789!

comp-intel/2011.7.256 nas!

comp-pgi/10.6 ncarg/4.4.2/intel!

comp-pgi/11.0 ncl/5.1.1!

comp-pgi/11.6 ncl/5.2.1!

comp-pgi/12.3 ncl/5.2.1.gcc432!

!

4

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Intel: the performance compiler of choice,  
hands down"

• Sure would like to get rid of those old compilers!
• Users will complain: My code only works with version

such-and-such. 99% of the time, sign of problem with
their code!

• Need to be pulled into newer versions!
• Can’t really support the older compilers!

5

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Typical flags users use to check their code:"

•  Two popular flags:!
•  -check!
•  -ftrapuv!
Asserted here:!
-check and –ftrapuv are of no use to find uninitialised

data. For this, they are less than useless, as they
give a false sense of correctness.!

6

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-check "
Consider the code in "ex1.f":!
!
 1 program main!
 2 implicit none!
 3 double precision d!
 4 print *, d!
 5 print 100, d!
 6 100 format (z)!
 7 end!
!
Lines 4 and 5 print a double precision variable, "d", which has been correctly!
declared, but never set. When compiled and run, we get the following results:!
!
+ ifort ex1.f!
+ ./a.out!
 0.000000000000000E+000!
 0!
!
In this example, the variable happened to contain zero.!
!

7

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-check "
If we add the "-check" option, the intel compiler detects at runtime!
that the variable has not been initialized, and gives a fatal error:!
!
+ ifort -check ex1.f!
+ ./a.out!
forrtl: severe (193): Run-Time Check Failure. The variable 'main_$D' is
being used without being defined!

Image PC Routine Line Source !
a.out 000000000046970A Unknown Unknown Unknown!
a.out 0000000000468285 Unknown Unknown Unknown!
a.out 000000000041FE66 Unknown Unknown Unknown!
a.out 0000000000403FA5 Unknown Unknown Unknown!
a.out 0000000000404A58 Unknown Unknown Unknown!
a.out 0000000000402CE7 Unknown Unknown Unknown!
a.out 0000000000402C7C Unknown Unknown Unknown!
libc.so.6 00007FFFED133BC6 Unknown Unknown Unknown!
a.out 0000000000402B79 Unknown Unknown Unknown!
!

8

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-check "
However, it is easy to inhibit the proper functioning of runtime detection!
of uninitialized variables by simply passing the variable to a subroutine!
before it is used. We change our example to the contents of "ex2.f":!
!
 1 program main!
 2 implicit none!
 3 double precision d!
 4 call toto (d)!
 5 print *, d!
 6 print 100, d!
 7 100 format (z)!
 8 end!
 9 subroutine toto (d)!
 10 implicit none!
 11 double precision d!
 12 print *, d!
 13 print 100, d!
 14 100 format (z)!
 15 return!
 16 end!
!
The code is essentially the same as "ex1.f". The difference is, that on line!
4, the variable "d" is passed to subroutine "toto". The variable is not!
set in the subroutine. Simply referencing an otherwise un-set variable in!
a subroutine argument list looks to be enough to defeat the detection!
of the fact that variable "d" is uninitialized:!
!
+ ifort -check ex2.f!
+ ./a.out!
 0.000000000000000E+000!
 0!
 0.000000000000000E+000!
 0!
Again, the variable happened to contain a zero, but this time, the runtime!
detection of the uninitialized variable did not occur.!

!

9

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-check "
Let's try again, turning on full optimization and inter-procedural analysis
("-ipo"), which should have no trouble functioning since the source for the
main program and the subroutine are in the same source file "ex2.f", after
all:!

!

+ ifort -ipo -g -traceback -O3 -check ex2.f!

ipo: remark #11001: performing single-file optimizations!

ipo: remark #11006: generating object file /tmp/ipo_ifort7cxuTK.o!

+ ./a.out!

 0.000000000000000E+000!

 0!

 0.000000000000000E+000!

 0!

!

Still, placing the variable "d" on the argument list of a subroutine!

entirely defeats the functioning of the "-check" option.!

!

10

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-check "

CONCLUSION:!

!

While "-check" may detect some uses of
uninitialized variables, it does not detect
them all. So, the fact that a code runs
without error with "-check" enabled, is no
assurance that uninitialized variables
don’t exist in a user's code.!

!

Still useful for bounds-checking, though!!

11

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-ftrapuv "

Please see:!
!
http://software.intel.com/en-us/articles/dont-
optimize-when-using-ftrapuv-for-uninitialized-
variable-detection!

!
for an explanation by Intel of why no optimization
should be used when compiling with "-ftrapuv". All
examples in this document will always use an
explicit "-O0" when compiling with "-ftrapuv".!
!

Note that default optimization is "-O2".!
!

12

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-ftrapuv "

The "-ftrapuv" option is popular and misunderstood.
Perhaps due to it’s unfortunate name, there is a
general belief that this will cause uninitialized
floating point variables to generate floating
exceptions when they are used. This is not the case.
What the option does, is cause some uninitialized
variables to be filled with a "large value". In this
case, all hexadecimal "C". i.e. a 4 byte entity will be
filled with 0xcccccccc, while an 8 byte entity will be
filled with 0xcccccccccccccccc.!

!

This is a perfectly valid floating point number, in
either 4 or 8 byte (i.e. single or double precision)
modes.!

!

13

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-ftrapuv "
Let's try this option with our two previous examples:!
!
+ ifort -g -traceback -O0 -ftrapuv -fpe0 ex1.f!
+ ./a.out!
 -9.255963134931783E+061!
 CCCCCCCCCCCCCCCC!
+ ifort -g -traceback -O0 -ftrapuv -fpe0 ex2.f!
+ ./a.out!
 -9.255963134931783E+061!
 CCCCCCCCCCCCCCCC!
 -9.255963134931783E+061!
 CCCCCCCCCCCCCCCC!
!
Note that we have explicitly enabled floating point exceptions by use!
of the "-fpe0" option.!
!
So, the result is that "hexadecimal all C" in double precision is!
approximately -9.256 E 61. The corresponding value for single precision!
is left as an exercise for the user.!
!

14

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-ftrapuv "
Just to be completely sure about the acceptability of hexadecimal all c's!
as a floating point value, let's alter "ex2.f" to multiply the uninitialized!
value of "d" by 2.0 prior to printing it out. The result is "ex2a.f":!
!
 1 program main!
 2 implicit none!
 3 double precision d!
 4 call toto (d)!
 5 d = d * 2.0!
 6 print *, d!
 7 print 100, d!
 8 100 format (z)!
 9 end!
 10 subroutine toto (d)!
 11 implicit none!
 12 double precision d!
 13 print *, d!
 14 print 100, d!
 15 100 format (z)!
 16 return!
 17 end!
!
same as before, except that the value of "d" is multiplied by 2.0 at!
line 5.!
!
The result is:!
!
+ ifort -g -traceback -O0 -ftrapuv -fpe0 ex2a.f!
+ ./a.out!
 -9.255963134931783E+061!
 CCCCCCCCCCCCCCCC!
 -1.851192626986357E+062!
 CCDCCCCCCCCCCCCC!
!
So, the print of "d" from line 6 is, in fact, twice that from line 13.!

!

15

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

-ftrapuv "
Just to clarify how useless the "-ftrapuv" option is, here's one last example "ex2b.f":!
!
 1 program main!
 2 implicit none!
 3 double precision d, e!
 4 e = 1.0D100!
 5 call toto (d)!
 6 e = e + d!
 7 print *, e!
 8 end!
 9 subroutine toto (d)!
 10 implicit none!
 11 double precision d!
 12 d = d * 2.0!
 13 return!
 14 end!
!
We now compile and run this code with no options, with -check, and with -ftrapuv!
+ ifort ex2b.f!
+ ./a.out!
 1.000000000000000E+100!
+ ifort -check ex2b.f!
+ ./a.out!
 1.000000000000000E+100!
+ ifort -g -traceback -O0 -ftrapuv -fpe0 ex2b.f!
+ ./a.out!
 1.000000000000000E+100!
!
We can see from the above results the uselessness of -check and -ftrapuv, as the output is!
the same in all modes. The dangerous addition of uninitialized data at line 6 lurks!
as a potential error.!
!
Even when the -ftrapuv flag is used to set the uninitializeded data to the value!
0xcccccccc, and then multiplied by two at line 12, the addition of the result:!
-1.851192626986357E+062 to 1.0D100 makes no difference to the result due to!
the large difference of exponents.!

!

16

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Conclusion: "

!
!
"-check" is of no use to find
uninitialized floating point variables.!

"-ftrapuv" is of no use to find
uninitialized floating point variables.!

!

17

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
Consider the following fortran code contained in "ex3.f":!
!
 1 program main!
 2 implicit none!
 3 double precision aa (1000), bb (1000)!
 4 common /toto/ aa, bb!
 5 integer n!
 6 n = 1000!
 7 call sub1 (n)!
 8 end!
 9 subroutine sub1 (n)!
 10 implicit none!
 11 integer n!
 12 double precision a1!
 13 double precision a2!
 14 double precision a (n)!
 15 double precision b (n)!
 16 double precision c (1000)!
 17 double precision d (1000)!
 18 real *8, dimension (:), allocatable :: e, f, g, h!
 19 double precision aa (1000), bb (1000)!
 20 common /toto/ aa, bb!
 21 print *, "sub1 --"!
 22 allocate (e (n))!
 23 allocate (f (n))!
 24 allocate (g (1000))!
 25 allocate (h (1000))!
 26 print 200, "address of sub1 automatic array a", loc (a)!
 27 print 100, a (1)!
 28 print 100, a (1000)!
 29 print 200, "address of sub1 automatic array b", loc (b)!
 30 print 100, b (1)!
 31 print 100, b (1000)!
 32 print 200, "address of sub1 fixed size array c", loc (c)!
 33 print 100, c (1)!
 34 print 100, c (1000)!

!

18

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
 35 print 200, "address of sub1 fixed size array d", loc (d)!
 36 print 100, d (1)!
 37 print 100, d (1000)!
 38 print 200, "address of sub1 allocatable array e", loc (e)!
 39 print 100, e (1)!
 40 print 100, e (1000)!
 41 print 200, "address of sub1 allocatable array f", loc (f)!
 42 print 100, f (1)!
 43 print 100, f (1000)!
 44 print 200, "address of sub1 allocatable array g", loc (g)!
 45 print 100, g (1)!
 46 print 100, g (1000)!
 47 print 200, "address of sub1 allocatable array h", loc (h)!
 48 print 100, h (1)!
 49 print 100, h (1000)!
 50 print 200, "address of sub1 scalar a1", loc (a1)!
 51 print 100, a1!
 52 print 200, "address of sub1 scalar a2", loc (a2)!
 53 print 100, a2!
 54 deallocate (e)!
 55 deallocate (f)!
 56 deallocate (g)!
 57 deallocate (h)!
 58 call mallocator ("sub1 first", 1000)!
 59 call mallocator ("sub1 second", 1000)!
 60 print 200, "address of sub1 common-block array aa", loc (aa)!
 61 print 100, aa (1)!
 62 print 100, aa (1000)!
 63 print 200, "address of sub1 common-block array bb", loc (bb)!
 64 print 100, bb (1)!
 65 print 100, bb (1000)!
 66 return!
 67 100 format (z16)!
 68 200 format (a, z16)!
 69 end!

19

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
The purpose of this code is to demonstrate the fundamental ways that variables!
can be declared in fortran, and discuss the ramifications of how these!
different declarations affect where the data is actually located by the!
ifort runtime. Understanding and controlling this is fundamental to developing!
a methodology for detecting uninitialized variables in user code.!
!
Lines 12 and 13 show the simplest variable of all. A scalar entity declared!
with a type.!
!
Lines 16 and 17 show a simple array, declared with a fixed size.!
!
Lines 14 and 15 show a so-called "automatic" array. These arrays are!
declared with a size determined by a variable ("n"), that is itself!
passed in the argument list of the subroutine. The compiler thus has to manage!
allocating and de-allocating the space for such arrays upon entry/exit.!
!
Line 18 shows allocatable arrays. These arrays are explicitly allocated and!
deallocated by the user with code on lines 22-25, and 54-57.!
!
Lines 19-20 show arrays that are contained in common blocks.!
!

20

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"

Lines 58 and 59 call a small scrap of C code, that allocates memory using a call to
"malloc”. That code is in "mallocator.c":!

!

 1 #include <stdio.h>!

 2 #include <stdlib.h>!

 3 mallocator_ (char *s, int *n)!

 4 {!

 5 void *p;!

 6 p = malloc (*n*8);!

 7 if (p == NULL) {!

 8 fprintf (stderr, "could not malloc: %d bytes", *n*8);!

 9 exit (1);!

 10 }!

 11 printf ("%s: malloced 8*%d bytes at address: %16llx %16llx\n", s, *n, p,
*(unsigned long long *)p);!

 12 }!

!

21

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
None of these different types of allocated memory are initialized in any way.!
Generally, their addresses (i.e. "loc") and contents are printed by the running!
of the resulting compiled program. We are going to compile and run this!
code in a variety of ways and examine the printed addresses and contents of!
the data. Our goal is to somehow fill up the uninitialized areas with!
signaling NANs. i.e. special bit patterns that, when used in a floating!
point computation, will cause a "floating point exception". This can be!
used in conjunction with the debugger, i.e. "gdb" or "idbc" to find the location!
in the user source code where the exception occurred, so that the user can!
be made aware of when they are using uninitialized floating point data.!
!
It is recommended to use the command line intel debugger, "idbc" for getting the!
line number information. Since the described method is explicitly only!
functional with the intel compiler suite, access to the idbc debugger!
can be assumed. Also, using the command-line version makes incorporation!
of the idbc command very easy for PBS batch scripts. Lastly, gdb seems to!
have trouble correctly reading certain Intel-generated symbol tables,!
particularly for extremely large and complex codes. So, the use of!
"idbc" is highly recommended.!
!
NOTE that there is no similar concept of an SNAN for integer data or operations.!
!

22

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
We will now compile and run "ex3.f" with -O0. The results, with line numbers!
for discussion, are:!
!
 1 + ifort -O0 ex3.f mallocator.o!
 2 + ./a.out!
 3 sub1 --!
 4 address of sub1 automatic array a 7FFFFFFF9D00!
 5 0!
 6 0!
 7 address of sub1 automatic array b 7FFFFFFFBC40!
 8 0!
 9 2D!
 10 address of sub1 fixed size array c 6A7DA0!
 11 0!
 12 0!
 13 address of sub1 fixed size array d 6A9EA0!
 14 0!
 15 0!
 16 address of sub1 allocatable array e 6BA190!
 17 0!
 18 0!
 19 address of sub1 allocatable array f 6BC0E0!
 20 0!
 21 0!
 22 address of sub1 allocatable array g 6BE030!
 23 0!
 24 0!
 25 address of sub1 allocatable array h 6BFF80!
 26 0!
 27 0!
 28 address of sub1 scalar a1 7FFFFFFFDF10!
 29 6B7038!
 30 address of sub1 scalar a2 7FFFFFFFDF28!
 31 7FFFEDABF6F8!
 32 sub1 first: malloced 8*1000 bytes at address: 6ba190 7fffed46eeb8!
 33 sub1 second: malloced 8*1000 bytes at address: 6bc0e0 0!
 34 address of sub1 common-block array aa 6B2A80!
 35 0!
 36 0!
 37 address of sub1 common-block array bb 6B49C0!
 38 0!
 39 0!
!

23

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
Note the appearance of "garbage", i.e. unexpected non-zero values, at lines!
9, 29, 31, and 32. If you run this code yourself, you may get different
values.!

!
Note that the addresses of allocatable arrays e and f on lines 16 and 19!
have been re-used by malloc on lines 32 and 33. So we can assume that the!
ifort allocatable mechanism is using malloc for allocation.!
!
Now, we are going to compile the code with some extra flags. We've
determined!

that adding "-auto" and "-heap-arrays" has some particular benefits for
what!

we are trying to accomplish. The "-auto" flag will place all scalars on the !
stack, while "-heap-arrays" will cause all arrays to be allocated via
malloc.!

Why we want to do this will become apparent later. We are also going to!
add "-g -traceback" to get symbol information, "-ftrapuv" to try to!
set uninitialized data to "all C's", and "-O0" is required with "-ftrapuv".!
!

24

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
The results are:!
!
1 + ifort -g -traceback -O0 -ftrapuv -fpe0 -auto -heap-arrays ex3.f mallocator.o!
2 + ./a.out!
3 sub1 --!
4 address of sub1 automatic array a 6B4FB0!
5 0!
6 0!
7 address of sub1 automatic array b 6B3060!
8 0!
9 0!
10 address of sub1 fixed size array c 7FFFFFFF9C20!
11 CCCCCCCCCCCCCCCC!
12 CCCCCCCCCCCCCCCC!
13 address of sub1 fixed size array d 7FFFFFFFBB60!
14 CCCCCCCCCCCCCCCC!
15 CCCCCCCCCCCCCCCC!
16 address of sub1 allocatable array e 6BA030!
17 0!
18 0!
19 address of sub1 allocatable array f 6BBF80!
20 0!
21 0!
22 address of sub1 allocatable array g 6BDED0!
23 0!
24 0!
25 address of sub1 allocatable array h 6BFE20!
26 0!
27 0!
28 address of sub1 scalar a1 7FFFFFFFDF00!
29 CCCCCCCCCCCCCCCC!
30 address of sub1 scalar a2 7FFFFFFFDF18!
31 CCCCCCCCCCCCCCCC!
32 sub1 first: malloced 8*1000 bytes at address: 6ba030 7fffed26aeb8!
33 sub1 second: malloced 8*1000 bytes at address: 6bbf80 0!
34 address of sub1 common-block array aa 6AE860!
35 0!
36 0!
37 address of sub1 common-block array bb 6B07A0!
38 0!
39 0!

!

25

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"

We can see the severe limits of "-ftrapuv”’s
ability to set uninitialized data!
to "all C's". In fact, only fixed size arrays and
scalars got set.!
!
What is helpful, though, is that judging by the
range of their addresses, all the other data arrays
have been moved to the heap (i.e. malloc).!
!
What can be done now, is to write a little pre-
loadable shared code segment that can intercept
calls to malloc, and initialize the data before the
call ! returns to the user. That code is not
presented here (it's about 200 lines of!
c code).!
!

26

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
However, the results of using it are:!
!
 1 + LD_PRELOAD=/u/scicon/tools/share/uninsnan_preload.so!
 2 + ./a.out!
 3 snan.c line 110: SNAN v1.3 enabled, mode is default: SNAN_MODE_DP, malloc'ed memory will be set to

0xfff7ffffffffffffL!
 4 snan.c line 111: SNAN available modes are: setenv SNAN_MODE_MIXED, setenv SNAN_MODE_DP, setenv

SNAN_MODE_SP, setenv SNAN_MODE_BIGINT, setenv SNAN_MODE_ZEROS!
 5 snan.c line 112: SNAN works best with ifort and the -heap-arrays -fpe0 flags!
 6 snan.c line 113: SNAN also works with pgf90 and the -Ktrap=fp flag!
 7 snan.c line 115: SNAN will abort if more than one openmp thread is used, over-ride with: setenv

SNAN_MODE_MANY_THREADS!
 8 snan.c line 119: SNAN messages may be inhibited with: setenv SNAN_MODE_QUIET!
 9 sub1 --!
 10 address of sub1 automatic array a 6B4FB0!
 11 FFF7FFFFFFFFFFFF!
 12 FFF7FFFFFFFFFFFF!
 13 address of sub1 automatic array b 6B3060!
 14 FFF7FFFFFFFFFFFF!
 15 FFF7FFFFFFFFFFFF!
 16 address of sub1 fixed size array c 7FFFFFFF9C20!
 17 CCCCCCCCCCCCCCCC!
 18 CCCCCCCCCCCCCCCC!
 19 address of sub1 fixed size array d 7FFFFFFFBB60!
 20 CCCCCCCCCCCCCCCC!
 21 CCCCCCCCCCCCCCCC!
 22 address of sub1 allocatable array e 6B9020!
 23 FFF7FFFFFFFFFFFF!
 24 FFF7FFFFFFFFFFFF!
 25 address of sub1 allocatable array f 6BAF70!
 26 FFF7FFFFFFFFFFFF!
 27 FFF7FFFFFFFFFFFF!
 28 address of sub1 allocatable array g 6BCEC0!
 29 FFF7FFFFFFFFFFFF!
 30 FFF7FFFFFFFFFFFF!
 31 address of sub1 allocatable array h 6BEE10!
 32 FFF7FFFFFFFFFFFF!
 33 FFF7FFFFFFFFFFFF!
 34 address of sub1 scalar a1 7FFFFFFFDF00!
 35 CCCCCCCCCCCCCCCC!
 36 address of sub1 scalar a2 7FFFFFFFDF18!
 37 CCCCCCCCCCCCCCCC!
 38 address of sub1 common-block array aa 6AE860!
 39 0!
 40 0!
 41 address of sub1 common-block array bb 6B07A0!
 42 0!
 43 0!
 44 sub1 first: malloced 8*1000 bytes at address: 6b9020 fff7ffffffffffff!
 45 sub1 second: malloced 8*1000 bytes at address: 6baf70 fff7ffffffffffff!

27

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
Note that explicilty setting LD_PRELOAD from the command line is quite dangerous, as!
it applies to all further commands executed by the user's login shell. From now on!

in the documentation and examples, we will use the "snan_wrapper" script to perform!
this function. This is a script which takes the target command as an argument, and only applies!

the setting of LD_PRELOAD within the script, while the target command is being run. This!
prevents confusion and possible error for the user due to inadvertent setting of LD_PRELOAD.!

!
So, now we are approaching our goal. We are able to initialize all the basic!

types of fortran memory allocation except common blocks. Traditional common!

blocks live in "bss" space, and can be assumed by the user to be preset to!
zero. More modern allocatable common blocks will use the allocate mechanism,!

and be subject to initialization by the malloc preloaded shared object!
method.!

!
How are we to deal with those "all C" regions?!

!
The answer is fairy simple. The compiler actually generates code!

that appears in the user's executable to explicitly set these regions!

at runtime. It is a simple matter to create a tool which will directly edit!
the executable created by the compiler, replacing all the instruction sequences!

that set memory areas to "all C" with a constant of our choice. In this!
case, a signaling NaN.!

28

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
This process appears as follows:!
!
 1 + ifort -g -traceback -O0 -ftrapuv -fpe0 -auto -heap-arrays ex3.f mallocator.o!
 2 + snan_patch -i a.out -o a.out.alt!
 3 snan_patch: 6 movl opcodes had constant changed from 0xcccccccc to 0xfff7ffff (signalling NAN, double

precision)!
 4 + snan_wrapper ./a.out.alt!
 5 snan.c line 231: SNAN v1.3 enabled, mode is default: SNAN_MODE_DP, malloc'ed memory will be set to

0xfff7ffffffffffffLL!
 6 snan.c line 235: SNAN available modes are: setenv SNAN_MODE_MIXED, setenv SNAN_MODE_DP, setenv

SNAN_MODE_SP, setenv SNAN_MODE_BIGINT, setenv SNAN_MODE_ZEROS!
 7 snan.c line 236: SNAN works best with ifort and the -heap-arrays -fpe0 flags!
 8 snan.c line 237: SNAN also works with pgf90 and the -Ktrap=fp flag!
 9 snan.c line 239: SNAN will abort if more than one openmp or posix thread is used, over-ride with: setenv

SNAN_MODE_MANY_THREADS!
 10 snan.c line 243: SNAN messages may be inhibited with: setenv SNAN_MODE_QUIET!
 11 sub1 --!
 12 address of sub1 automatic array a 6B4FB0!
 13 FFF7FFFFFFFFFFFF!
 14 FFF7FFFFFFFFFFFF!
 15 address of sub1 automatic array b 6B3060!
 16 FFF7FFFFFFFFFFFF!
 17 FFF7FFFFFFFFFFFF!
 18 address of sub1 fixed size array c 7FFFFFFF9C20!
 19 FFF7FFFFFFF7FFFF!
 20 FFF7FFFFFFF7FFFF!
 21 address of sub1 fixed size array d 7FFFFFFFBB60!
 22 FFF7FFFFFFF7FFFF!
 23 FFF7FFFFFFF7FFFF!
 24 address of sub1 allocatable array e 6B9020!
 25 FFF7FFFFFFFFFFFF!
 26 FFF7FFFFFFFFFFFF!
 27 address of sub1 allocatable array f 6BAF70!
 28 FFF7FFFFFFFFFFFF!
 29 FFF7FFFFFFFFFFFF!
 30 address of sub1 allocatable array g 6BCEC0!
 31 FFF7FFFFFFFFFFFF!
 32 FFF7FFFFFFFFFFFF!
 33 address of sub1 allocatable array h 6BEE10!
 34 FFF7FFFFFFFFFFFF!
 35 FFF7FFFFFFFFFFFF!
 36 address of sub1 scalar a1 7FFFFFFFDF00!
 37 FFF7FFFFFFF7FFFF!
 38 address of sub1 scalar a2 7FFFFFFFDF18!
 39 FFF7FFFFFFF7FFFF!
 40 address of sub1 common-block array aa 6AE860!
 41 0!
 42 0!
 43 address of sub1 common-block array bb 6B07A0!
 44 0!
 45 0!
 46 sub1 first: malloced 8*1000 bytes at address: 6b9020 fff7ffffffffffff!
 47 sub1 second: malloced 8*1000 bytes at address: 6baf70 fff7ffffffffffff!
!

29

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
Line 1 builds ex3.f with the same set of flags as before.!

!

Line 2 shows the application of the "snan_patch" utility. Input is the a.out just
created, and output is "a.aout.alt". By default, the "all Cs" are set to signaling NaN
double precision.!

!

Line 3 is output from snan_patch, showing that 6 opcodes were changed.!

!

Line 4 uses "snan_wrapper" to run "a.out.alt". snan_wrapper is a simple script that
runs the indicated program while setting LD_PRELOAD internally, only for the running of
the program, and not affecting !your shell environment. This is the preferable way
to set LD_PRELOAD. Please do not set LD_PRELOAD yourself.!

!

Lines 11 - 47 show that all uninitialized data has been set to double precision!

signaling NAN's, with the exception of common blocks, as discussed above.!

!

Note that either FFF7FFFFFFFFFFFF or FFF7FFFFFFF7FFFF are signalling NaNs in double
precision. !Since the compiler only uses 4 byte stores for setting "all Cs", we
have to repeat the exponent!in the mantissa portion. Not a problem, since all that is
required is that the mantissa is non-zero, which is satisfied in both cases.!

!

30

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

memory"
Important note:!

!

How do we know that our code doesn't contain sequences setting data to "all Cs" already?!

Isn't there the possibility of "snan_patch" to break our code?!

!

The answer to the first question is: we don't, so yes, snan_patch may break the code.!

To address this, snan_patch has an option to simply look for the code sequences in question.!

To use this function, compile WITHOUT -ftrapuv as follows:!

!

 1 + ifort -g -traceback -O0 -fpe0 -auto -heap-arrays ex3.f mallocator.o!

 2 + snan_patch -v a.out!

 3 main.c line 338: no movl opcodes of the constant 0xcccccccc to a stack based address were detected, OK to rebuild
with -ftrapuv and apply snan_patch!

!

On line 1, we compile the code will all the usual options EXCEPT -ftrapuv.!

Line 2 uses snan_patch with the -v option to examine a.out for the code sequences.!

Line 3 shows that no such sequences were detected, therefore, it is safe to add the -ftrapuv flag, RECOMPILE, and use!

snan_patch to create an alternate a.out.!

!

When "snan_patch" is used with the "-v" option, it will return a non-zero exit status!

if the target movl opcodes are found in the input executable. This is is specifically!

so that "snan_patch -v" can be used inside a Makefile and the error condition of!

target movl opcodes present in an executable compiled without -ftrapuv can be caught.!

!

Please use appropriately.!

!

31

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
HOW TO FIND UNINITIALIZED FLOATING POINT VARIABLES USING ifort!

!

Step 1) Change your ifort code generation flags to use:!

!

-O0 -ftrapuv -heap-arrays -auto -g -traceback -fpe0!

!

If your code does not compile/run with this set of options, then your!

code cannot use the method described here. You must use precisely these flags except as noted here:!

!

Other flags known to work with the above set:!

!

-fPIC!

-fp-model precise!

!

You MUST compile AND RELINK ALL of your object modules (.o .a .so files) and RELINK with the above
flags.!

!

(actually, any flags not affecting code generation are OK)!

!

32

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"

Step 2) Put:!

!

/u/scicon/tools/share/uninit/bin!

!

in your PATH.!

!

There's a script, an executable, and a shared loadable library
there. The source of the "snan_patch" exectuable is in:!

!

/u/scicon/tools/share/uninit/src!

!

The source of the "snan_preload.so" shared object is in:!

!

/u/scicon/tools/share/uninit/src!

!

33

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
Step 3) Apply the "snan_patch" command to your executable!
!
For double precision code:!
!
snan_patch -D -i a.out -o a.out.altd!
!
For single precision code:!
!
snan_patch -S -i a.out -o a.out.alts!
!
If neither -S nor -D are supplied, the default is double precision (-D)!
!
If you are unsure if your code is double or single precision, simply make both!
the single and double precision versions as shown above, and try running each one!
as described below.!
!
Be sure to retain the unaltered "a.out" version of your code. !
snan_patch must always use as input the original a.out as created in Step 1.!
!

34

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
Step 4) Run your code using the snan_wrapper script!

!

To ensure a complete core file, add this command before your run:!

!

limit coredumpsize unlimited!

!

now:!

!

For double precision:!

!

setenv SNAN_MODE_DP!

snan_wrapper a.out.dp!

!

For single precision:!

!

setenv SNAN_MODE_SP!

snan_wrapper a.out.dp!

!

If your code tried to perform floating point computation with uninitialized!

data, a floating point exception will be generated, and a core dump created.!

!

If no floating point exception occurs, then you are not computing using uninitialized!

data. To verify the integrity of the process, you could deliberately add such!

code to your program, to ensure that the detection process is working correctly,!

and that you have correctly followed the steps outlined above.!

!

35

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
Step 5) Examining the core file if one is created.!

!

Invoke a debugger to get the line information where the floating point exception!

occurred. You can then fix your code, and iterate on this process until you have located and repaired
all locations in your code where uninitialized data was being used in computation.!

!

invoke idbc, the intel command-line debugger:!

!

idbc ./a.out core.nnnn!

!

when a core dump is created, and "core.nnn" is the name of the core file.!

!

Use the "where" command to find where the floating point exception occurred.!

That is the location of the use of the uninitialized data.!

!

You may equally well be able to use the gnu gdb debugger instead of idbc.!

gdb sometimes has trouble reading the ifort symbol tables. That is why idbc!

is suggested in it's place.!

!

36

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
OPENMP IMPORTANT NOTE---!
The shared library will disable the ability to run with more than one
thread.!

Using this method, you must debug your openmp code with:!
!
setenv OMP_NUM_THREADS 1!
!
The ifort runtime cannot successfully process floating point exceptions
from !

more than one thread.!
!
In such a case, you will receive meaningless and misleading error messages!
or no messages at all.!
!
NOTE--!
Some serial codes call library routines that perform certain functions via!
the pthreads mechanism. In such a case, you can over-ride the shared!
library's inhibition of threading by using an environment variable:!
!
setenv SNAN_MODE_MANY_THREADS!

37

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"

File ex5.f contains:!
!
 1 program main!
 2 implicit none!
 3 double precision d!
 4 d = d + 1.0!
 5 print *, d!
 6 print 100, d!
 7 100 format (z)!
 8 end!
!

38

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"

 1 limit coredumpsize unlimited!
 2 rm -f core.19851!
 3 ifort -O0 -ftrapuv -fpe0 -auto -heap-arrays -g -traceback ex5.f!
 4 snan_patch -i a.out -o a.out.alt!
 5 snan_patch: 3 movl opcodes had constant changed from 0xcccccccc to 0xfff7ffff (signalling NAN, double precision)!
 6 snan_wrapper ./a.out.alt!
 7 snan.c line 231: SNAN v1.3 enabled, mode is default: SNAN_MODE_DP, malloc'ed memory will be set to 0xfff7ffffffffffffLL!
 8 snan.c line 235: SNAN available modes are: setenv SNAN_MODE_MIXED, setenv SNAN_MODE_DP, setenv SNAN_MODE_SP, setenv

SNAN_MODE_BIGINT, setenv SNAN_MODE_ZEROS!
 9 snan.c line 236: SNAN works best with ifort and the -heap-arrays -fpe0 flags!
 10 snan.c line 237: SNAN also works with pgf90 and the -Ktrap=fp flag!
 11 snan.c line 239: SNAN will abort if more than one openmp or posix thread is used, over-ride with: setenv

SNAN_MODE_MANY_THREADS!
 12 snan.c line 243: SNAN messages may be inhibited with: setenv SNAN_MODE_QUIET!
 13 forrtl: error (65): floating invalid!
 14 Image PC Routine Line Source !
 15 a.out.alt 0000000000402D01 MAIN__ 4 ex5.f!
 16 a.out.alt 0000000000402C7C Unknown Unknown Unknown!
 17 libc.so.6 00007FFFECD2CBC6 Unknown Unknown Unknown!
 18 a.out.alt 0000000000402B79 Unknown Unknown Unknown!
 19 snan_wrapper: line 3: 25728 Aborted (core dumped) LD_PRELOAD=${HERE}/snan_preload.so $@!
 20 setenv LASTCORE `ls -t core* | sed 1q`!
 21 sed 1q!
 22 ls -t core.25728!
 23 idbc ./a.out.alt core.25728!
 24 Intel(R) Debugger for applications running on Intel(R) 64, Version 12.0, Build [74.923.2]!
 25 ------------------ !
 26 object file name: ./a.out.alt !
 27 core file name: core.25728!
 28 Reading symbols from /home4/dpbarker/uninit/examples/a.out.alt...done.!
 29 Core file produced from executable a.out.alt!
 30 Initial part of arglist: ./a.out.alt !
 31 Thread terminated at PC 0x00007fffecd40945 by signal SIGABRT!
 32 #0 0x00007fffecd40945 in raise () in /lib64/libc-2.11.1.so!
 33 #1 0x00007fffecd41f21 in abort () in /lib64/libc-2.11.1.so!
 34 #2 0x000000000040334e in for__signal_handler () in /home4/dpbarker/uninit/examples/a.out.alt!
 35 #3 0x00007fffed27f5d0 in __restore_rt () in /lib64/libpthread-2.11.1.so!
 36 #4 0x0000000000402d01 in main () at /home4/dpbarker/uninit/examples/ex5.f:4!

39

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
ex7.c consists of:!
!
 1 #include <stdio.h>!
 2 main ()!
 3 {!
 4 double d;!
 5 yoyo (&d);!
 6 toto (&d);!
 7 printf ("%lg\n", d);!
 8 }!
 9 toto (double *d)!
 10 {!
 11 *d = *d + 1.0;!
 12 }!
 13 yoyo (long long *d)!
 14 {!
 15 printf ("%llx\n", *d);!
 16 }!
!

40

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

usage"
 1 limit coredumpsize unlimited!
 2 rm -f core.5012!
 3 icc -g -traceback -O0 -ftrapuv -heap-arrays ex7.c!
 4 ./a.out!
 5 cccccccccccccccc!
 6 -9.25596e+61!
 7 icc -g -traceback -O0 -ftrapuv -heap-arrays ex7.c!
 8 snan_patch -i a.out -o a.out.alt!
 9 snan_patch: 9 movl opcodes had constant changed from 0xcccccccc to 0xfff7ffff (signalling NAN,

double precision)!
 10 snan_wrapper a.out.alt!
 11 snan.c line 231: SNAN v1.3 enabled, mode is default: SNAN_MODE_DP, malloc'ed memory will be set

to 0xfff7ffffffffffffLL!
 12 snan.c line 235: SNAN available modes are: setenv SNAN_MODE_MIXED, setenv SNAN_MODE_DP, setenv

SNAN_MODE_SP, setenv SNAN_MODE_BIGINT, setenv SNAN_MODE_ZEROS!
 13 snan.c line 236: SNAN works best with ifort and the -heap-arrays -fpe0 flags!
 14 snan.c line 237: SNAN also works with pgf90 and the -Ktrap=fp flag!
 15 snan.c line 239: SNAN will abort if more than one openmp or posix thread is used, over-ride with:

setenv SNAN_MODE_MANY_THREADS!
 16 snan.c line 243: SNAN messages may be inhibited with: setenv SNAN_MODE_QUIET!
 17 snan_wrapper: line 3: 5048 Floating point exception(core dumped) LD_PRELOAD=${HERE}/

snan_preload.so $@!
 18 setenv LASTCORE `ls -t core* | sed 1q`!
 19 sed 1q!
 20 ls -t core.5048!
 21 idbc ./a.out.alt core.5048!
 22 Intel(R) Debugger for applications running on Intel(R) 64, Version 12.0, Build [74.923.2]!
 23 ------------------ !
 24 object file name: ./a.out.alt !
 25 core file name: core.5048!
 26 Reading symbols from /home4/dpbarker/uninit/examples/a.out.alt...done.!
 27 Core file produced from executable a.out.alt!
 28 Initial part of arglist: a.out.alt !
 29 Thread terminated at PC 0x000000000040063d by signal SIGFPE!
 30 #0 0x000000000040063d in toto (d=0x7fffffffe2c0) at /home4/dpbarker/uninit/examples/ex7.c:11!
 31 #1 0x00000000004005ce in main () at /home4/dpbarker/uninit/examples/ex7.c:6!

41

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Future plans"

• Some small-ish effort to support realloc!!
• Release the source code to interested parties!
• Discuss with Intel/others!
• Promote use as part of build/validation for large apps!
• Can this be made simpler??!

42

NASA High End Computing Capability! Question? Use the Webex chat facility to ask the Host"

Questions, help: 
 
 

david.p.barker@nasa.gov  
dbarker@supersmith.com 

"

43

